Схема задающего генератора и удвоителя частоты
Рис. 26. Схема автогенератора (емкостная «трехточка») для возбуждения кварцевого резонатора на гармониках (а) и ее эквивалентная схема (б)
В осцилляторных генераторах, работающих на частоте выше 20 МГц, обычно возбуждают кварц на третьей или пятой гармониках, но не более высоких, так как там сильнее сказывается вредное влияние статической емкости и емкости монтажа.
Для расчета генератора, схема которого показана на рис. 25, существуют простые формулы для емкости конденсаторов С1 и С2 (в пикофарадах), модуля коэффициента обратной связи |К| и высокочастотного напряжения на коллекторе (в вольтах):
Здесь Rу выбирается из расчета недонапряженного режима автогенератора; Хг — емкостное сопротивление конденсатора С2; Ко — коэффициент, определявший отношение емкостей конденсаторов С2/С1 = 1/Kо; fг — частота генерации, МГц; Rкв — эквивалентное активное сопротивление кварца. В генераторах на транзисторах серий П403, ГТ308 или им подобных значение Ко берут равным 1 — 1,5, а на транзисторах серий П411, ГТ311 — 0,7 — 0,8.
Рис 27 Диаграммы реактивного сопротивления:
а — последовательного контура; б - параллельного контура
При питании цепей коллектора и базы транзистора от общего источника Uпит (см. рис. 24,а) справедливо соотношение:
Эквивалентное сопротивление в цепи базы
должно быть равно 5 — 10 кОм. Сопротивление резисторов делителя определяют по формуламДля определения значения коэффициента А нужно в собранном генераторе, до установки кварца, временным делителем с переменным резистором установить коллекторный ток в пределах 2 — 3 мА. После этого следует измерить напряжение urz, а затем рассчитать R1 и R2. Сопротивление резистора R8 определяет температурную стабильность генератора. Существуют рекомендации по выбору этого резистора. Для транзисторов серии ГТ308, а также для близких к ним по параметрам R9 берут равным 300 Ом, а для транзисторов серии ГТ311 и им аналогичных -г- 390 Ом. Сопротивление нагрузочного резистора R3 определяют во формулам
где С1 — емкость внешнего конденсатора, Си — емкость монтажа (3 — 5 пФ); ch и Свых — входная и выходная емкости транзистора на частоте генерации По аналогии С2'=С2+СМ+СВХ.
Емкость конденсатора- СЗ определяют из соотношения С3=(0,01 — 0,1)С1. Емкость блокировочных конденсаторов (в пикофарадах) рассчитывают по формулам
где Кэ — сопротивление в омах; fг — частота в мегагерцах.
Перейдем к варианту генератора с емкостной «трехтонкой» и кварцем, работающим на нечетной механической гармонике (см. рис. 26). Там роль конденсатора С1 контура автогенератора играет параллельный контур CKLK (см, рис. 26,6). Как уже отмечалось, на частоте генерации этот контур должен иметь емкостное сопротивление, т. е. его резонансная частота fo должна быть ниже частоты генерации. Параметры контура следует выбирать так, чтобы его собственная частота равнялась fо = .(0,7 — 0,8)fг.
Обратимся к рис. 27,6. На частоте ШР имеется результирующая емкостная
проводимость В = wгСэкв = wгС'к —1/wгLК, где Ск и LK — соответственно емкость
и индуктивность контура. Обычно индуктивность LK обусловлена конструктивными соображениями. Емкость СЭКв выбирают равной емкости конденсатора С1, определяемой методом, изложенным выше. После этого получим:
Обобщенную емкость контура С'к (в пФ) можно определить, задавшись индуктивностью LK (в мкГн), по формуле:
Конкретная емкость конденсатора Ск:
СК = С'к — Свых — LM — Свнос.
При определении СВНос исходят из характера подключения буферной ступени к автогенератору. Возможны три варианта подключений внешней нагрузжн (рис. 28) — с индуктивной, автотрансформаторной и внешнеемкостной связью.
Рис. 28. Эквивалентные схемы генератора вида емкостная «трехточка» с работой кварцевого резонатора на механических гармониках:
а — связь с нагрузкой индуктивная; б — автотрансформаторная связь с нагрузкой; в — внешнеемкост-ная связь с нагрузкой
Связь с нагрузкой выбирается из условия оптимального согласования:
где Квкя — коэффициент включения (коэффициент трансформации); Ra — сопротивление нагрузки; R0e=106 LK/CKRK — эквивалентное сопротивление контура
здесь RK — активное сопротивление контура).
Известно, что при индуктивной связи с нагрузкой максимальное выходное напряжение будет при отношении L2/L1 = 0,15 — 0,2 (см. рис. 28,а). Катушку L2 следует располагать между витками катушки L1. При автотрансформаторной я внешнеемкостной связи с нагрузкой коэффициент включения выбирают в пределах 0,1 — 0,3.
Вносимая в контур емкость со стороны нагрузки
Св нос = K2вкл Сн.
Если подключение нагрузки индуктивное, то для определения параметров контура используется формула
Здесь Kтр — коэффициент трансформации; L2 — индуктивность катушки связи с нагрузкой; L1 — индуктивность катушки контура, например, для частоты в пределах 20 — 30 МГц ее выбирают равной 0,6 мкГн; Ксв — коэффициент связи между катушками, определяемый по формуле:
где — взаимная индуктивность (LСогл — суммарная индуктивность при согласном последовательном включении катушек, LBCTP — суммар-яая индуктивность при встречном последовательном включении катушек).
Необходимую расстройку контура для обеспечения .устойчивой генерации можно определить и опытным путем, задавшись индуктивностью катушки L1 и коэффициентом связи с нагрузкой. Используя генератор в режиме усилителя на частоте генерации и изменяя емкость конденсатора С2, снимают зависимость выходного напряжения от емкости С2. Определив максимум напряжения на контуре, увеличивают емкость С2 до тех пор, пока выходное напряжение не уменьшится на 30% от максимального. Необходимо, чтобы добротность катушки L1 была не хуже 50.
Кварцевые генераторы, собираемые по осцилляторной схеме, имеют узкие пределы регулировки номинала рабочей частоты. Следует иметь в виду и то, что обычно кварцевые резонаторы при изготовлении регулируют совместно с генератором по схеме последовательного резонанса. Из разновидностей генераторов с кварцем, работающим вблизи последовательного резонанса, представляют интерес те, у которых кварц включен в контур, хотя существуют и генераторы с кварцем в цепи обратной связи.
В генераторе с кварцем в контуре мож-« о подстраивать частоту внешними элементами, причем зона подстройки частоты горазде шире, чем у кварцевых генераторов других видов.
Рис. 29. Эквивалентная схема кварцевого генератора с кварцем в индуктивной ветви емкостной «трехточки»
Рассмотрим генераторы с кварцем в контуре, предназначенные для работы с частотой в пределах 5 — 50 МГц. На рис. 29 изображена схема генератора с емкостной «трехточкой» и с кварцем в индуктивной ветви контура. Емкость контура генератора составлена из последовательно соединенных емкостей конденсаторов С1 и С2.
Генерация происходит на частоте, близкой к частом последовательного резонанса кварца, у которого в этом случае общее сопротивление минимально и носит активный характер. Катушкой L1 (при перекрытии по индуктивности не менее чем в два раза) удается подстраивать частоту генерации в пределах ±(20 — 50)10-6 от номинального значения. Индуктивность Катушев Ll (в мкГн) определяют по формуле
где С1 и С2 — емкости конденсаторов в пФ; fг — частота в МГц.
Рис. 30. Схемы генератора с кварцевым резонатором, работающим вблизи последовательного резонанса:
а — на основной частоте; б — на механической гармонике
На рис. 30 показаны схемы генераторов с последовательным резонансом. Об& генератора имеют эквивалентную схему, изображенную на рис. 29, только bg втором из них (рис. 30,6) последовательно с катушкой L1 включен конденсатор СЗ, образуя с ней последовательный контур, который должен быть настроев ва частоту ниже частоты генерации. В результате на частоте генерации контур L1C8 будет иметь сопротивление индуктивного характера (см. рис. 27). Таким же образом может быть рассчитан и разделительный конденсатор СЗ в генераторе на схеме на рис. 30,а.
Контур L1C3 включают последовательно с кварцем в тех случаях, когдв требуется перестраивать частоту генератора в более широких пределах. Практически в таком случае удается расширить пределы подстройки частоты в 3 разе [±(60 — 150)10-6fг].
Для этого увеличивают индуктивность также в 3 раза и включают конденсатор СЗ такой емкости, при которой кварц возбуждается вблизи последовательного резонанса. Подборкой конденсатора СЗ можно грубо определить номинальную частоту генерации, а подстроечником катушки L1 — установить ее точно.
В генераторе (по схеме рис. 30,6), где кварц работает на механической гармонике, пределы перестройки частоты одной только катушкой L1, включенной последовательно с кварцем, меньше, чем на его основной частоте. Практически катушкой удается перестраивать частоту генерации в пределах ±15-10~6. Для расширения этих пределов индуктивность катушки, ориентировочное значение которой предварительно рассчитывают, увеличивают в 2 — 3 раза и последовательно с ней включают конденсатор такой емкости, при которой кварц возбуждается вблизи последовательного резонанса механической гармоники. Практически удается подстраивать частоту в пределах ±30-10~6. Параллельный контур L2C2 с учетом вносимой в него емкости выполняет роль конденсатора С1 в схемах емкостной «трехточки» (см. рис. 26).
Сопротивление резистора R4 (в омах) определяют по формуле
где fr — в мегагерцах; Со — статическая емкость кварца, пФ.
Этот резистор, шунтирующий кварц, предотвращает паразитные колебания, обусловленные индуктивностью катушки L1 и статической емкостью кварца. В остальном расчет не отличается от расчета обычного генератора по схеме емкостной «трехточки».
4. АППАРАТУРА ДИСКРЕТНОГО УПРАВЛЕНИЯ
Движением модели можно управлять разовыми (дискретными) командами. Характер этих команд, передаваемых оператором, зависит от вида исполнительного механизма на модели. В тех случаях, когда команды служат для включения и выключения исполнительных механизмов, они кратковременны. При управлении рулями длительность команды определяет необходимый угол поворота руля.